How to Assess the Fitness of Your Application Portfolio

Published 6 October 2021 - ID G00756915 - 17 min read
By Analyst(s): Stefan Van Der Zijden, Bill Swanton, Wan Fui Chan
Initiatives: Applications and Software Engineering Leaders

Application portfolios need regular review and remediation to ensure they meet evolving business and technical needs. Applications and software engineering leaders should assess the business, technical and cost fitness of each application to identify and prioritize rationalization opportunities.

Overview

Key Findings

- Application portfolio management initiatives often fail when the application fitness assessment does not include business stakeholders and lacks focus on providing business outcomes.

- While a typical application portfolio contains hundreds of opportunities for improvement, applications and software engineering leaders have limited time and resources. Identifying and prioritizing the most important improvements requires both a business and a technical lens.

- An application portfolio assessment provides insights into the business and technical fitness of applications, but these findings will only be useful if they generate actionable suggestions.

Recommendations

Applications and software engineering leaders should:

- Prepare for the application fitness review by setting the scope and creating a team of business and IT stakeholders.

- Assess a target segment of the application portfolio by rating the business, technical and cost fitness of each application.
Co-create a roadmap for portfolio rationalization by using the tolerate, invest, migrate and eliminate (TIME) model to discuss fitness of the portfolio with business and IT stakeholders, and jointly identify and prioritize application improvements.

Introduction

Over time, applications deteriorate in terms of business and technical fitness — resulting in a poor user experience and a lack of business agility at a greater cost and risk. Thus, application portfolios require routine evaluation and remediation to ensure that applications continue to support evolving business and technical needs.

However, applications and software engineering leaders are often tasked with managing and optimizing a vast, complex portfolio of interconnected applications. Given the scale and complexity of this initiative, what is the best approach to drive meaningful improvements to their application portfolio?

Applications and software engineering leaders must partner with business and IT stakeholders to perform a targeted assessment of their applications. They should use this research to rate each application based on its business and technical fitness. Then, they must categorize applications using the TIME model to identify and prioritize improvement opportunities and create a roadmap for rationalizing the application portfolio.

Applications and software engineering leaders can use the companion Excel-based tool — Toolkit: Application Portfolio Business and Technical Fitness Assessment — to conduct the application fitness assessment outlined in this document.

Analysis

Prepare for the Application Fitness Assessment

The goal of the application fitness assessment is to identify applications in the target portfolio that no longer support business and technical needs. To get the most value from this assessment, applications and software engineering leaders should:
Define the scope. Identify a key segment of business domains and business capabilities that is in most dire need of an update. The assessment should target a segment of the portfolio that is having issues with application support or a segment that is critical for achieving business goals in the future.

Assemble a team of key stakeholders. Recruit both IT stakeholders — such as enterprise architects, application developers, infrastructure operations and project managers — and business stakeholders who consume the application services — such as business leaders, process owners, subject matter experts and budgetholders. Build a consensus within the team about which segment of applications should be targeted. All team members should be involved in conducting the application fitness assessment (ideally in a workshop setting). Appoint someone from business or IT to lead and manage the process. If business stakeholders are difficult to engage, a first iteration of the assessment can be made by IT and used to start the discussion with business stakeholders to create awareness and engagement.

Applications and software engineering leaders should further detail the scope of the application fitness assessment by identifying the following units of assessment:

- **Business capabilities**: Start by determining the business capabilities that are relevant to the targeted business domain. You can further narrow your focus by selecting business capabilities that are strategically important and/or are known to suffer from poor application support.

- **Organizational units**: Identify all organizational units (departments, locations or regions) that are relevant to the targeted business domain.

- **Applications**: Applications form the heart and main targets of the assessment. The application is assessed for business fitness (*How well does the application support business needs?*) and cost fitness (*Are the operating costs acceptable?*). Each application is linked to the business capabilities and the organizational units it supports:
 - Use a business lens to determine what the “applications” are. A large software suite, such as an ERP system, should be broken down into the many “applications” that it provides to individual business functions and capabilities (for example, the accounts payable application of the ERP software). Assess each of these applications of a software suite to understand how well it supports individual business capabilities.
Technical stacks: Technical stacks are separately defined and assessed for technical fitness (What are the technical issues and risk?). Generally, there is a limited number of technical stacks, and each technical stack supports multiple applications. By assessing technical stacks separately and linking them with the applications, software engineering leaders can eliminate the duplication of effort involved with assessing the technical fitness of each individual application.

Figure 1 illustrates the relationship between these units of assessment and the three dimensions of application fitness.

Figure 1: Units of Assessment and Fitness Dimensions

Assess Applications for Business, Technical and Cost Fitness

The fitness review must examine applications from three main dimensions: business fitness, technical fitness and cost fitness. These dimensions determine overall application fitness or health and help the team to identify which applications are in most need of attention. The fitness for a dimension is defined by a number of fitness indicators. Applications and software engineering leaders should limit the number of performance indicators to include just enough indicators to identify and prioritize the applications that they need to focus on. This approach ensures that the assessment will be efficient. Efficiency is important because it will make the assessment easily repeatable to allow continuous monitoring of the application portfolio to track changing conditions.
Table 1 provides a list of common performance indicators for each fitness dimension. Applications and software engineering leaders can customize it by adding additional indicators to reflect and assess issues or concerns specific to their organization.

Table 1: Fitness Dimensions and Indicators for Application Portfolio Assessment

<table>
<thead>
<tr>
<th>Business Fitness</th>
<th>Technical Fitness</th>
<th>Cost Fitness</th>
</tr>
</thead>
<tbody>
<tr>
<td>How well does the application or product support the business?</td>
<td>What is the fitness of the technical stack that supports the application?</td>
<td>Costs to operate, maintain and improve functionality.</td>
</tr>
<tr>
<td>■ Business fit</td>
<td>■ Reliance on skills and subject matter experts</td>
<td>■ Service, maintenance and enhancement costs</td>
</tr>
<tr>
<td>■ Information quality, timeliness and privacy</td>
<td>■ Maintainability</td>
<td></td>
</tr>
<tr>
<td>■ Future potential</td>
<td>■ Vendor viability and support</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Architectural alignment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Production stability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Security</td>
<td></td>
</tr>
</tbody>
</table>

Source: Gartner (October 2021)

To reduce subjectivity in the performance ratings, all members of the assessment team should engage in the evaluation and rating process. As the team builds a consensus for each indicator rating, these discussions will shed light on new perspectives and generate insights that improve the effectiveness of the fitness assessment.

The following sections describe the fitness dimensions and indicators in more detail. See also Table 2 in the Notes section for more information.

Assess Business Fitness Indicators

To determine how well an application supports the business, the team should gather information about the application and assess it based on three business fitness indicators.

Business Fit
Business fit indicates how well the application supports the business capabilities or processes that users need across three categories:

- **Support**: How well does it improve productivity of employees or customer users?
- **Agility**: How well does it support changes and anticipated process or capability requirements?
- **Completeness**: How well does it generate the desired results without the need for overrides or manual intervention?

How to assess: Survey the end users and identify current shortcomings based on their feedback. This includes requested enhancements, reported productivity issues and off-the-system activities.

Information Quality, Timeliness and Privacy

Information quality, timeliness and privacy measures four aspects of data and information:

- Integrity of data management and transformation
- Quality and utility of data presentation, including user interfaces and reporting
- Availability of data and information for employees or customers
- Protection of sensitive personal data and regulatory compliance

How to assess: Analyze error rates, problem reporting and the frequency of questions regarding key data or information. Survey customers and key users by asking questions to delineate need-to-have and nice-to-have requirements.

Future Potential

Future potential indicates the current perception of the application’s contribution and its role in the future of the organization. In short, will the application support future known business and regulatory requirements?

How to assess: Learn from business stakeholders what changes they expect in the next year or two. Gather current roadmaps for an application from surveys and from discussions with enterprise architects, application portfolio managers, product managers and business leaders.
After gathering and assessing information about the business fitness indicators for each application, use Table 2 to rate the business fitness for each application.

Assess Cost Fitness

Cost Profile

Cost fitness indicates whether the total cost of ownership to operate, maintain and improve the application is at an acceptable level (see Calculate the True Cost of Application Ownership).

Cost fitness indicates whether the cost profile is “good” or “bad” (in other words, is this application economical or expensive to own and operate?). An application's cost profile is not about the absolute monetary amount, but, rather, its cost relative to its value. An application that costs $1 million a year can have a better cost profile than an application that costs $100,000 a year.

How to assess: Set an acceptable cost threshold for the underlying technical stack — tools, middleware, database management system, OS and similar software — including dedicated, allocated and shared resources. Set an acceptable application operating cost for the application operations, support and maintenance. Compare current costs to these targets.

After gathering and assessing information about the cost profile, use Table 2 to rate the cost fitness for each application.

Assess Technical Fitness Indicators

The technical fitness of an application is primarily a function of the technical stack or application platform that supports it, including the hardware, operating system, database and the development languages and techniques used to create it. As such, the team does not need to assess each application for technical fitness. Rather, they should assess the technical stack on which the target applications are built.
To determine how well the technical stack supports applications, the team should gather information about the technical stack and assess it based on six technical fitness indicators.

Reliance on Skills and Subject Matter Experts

Reliance on skills indicates the degree of staff support and expertise available to maintain and improve the stack and its applications. This includes both a solid team of subject matter experts and knowledgeable backup personnel.

How to assess: Ask key stakeholders — application business owners, project managers and support managers from business, technical and operational areas — about the level of subject matter expertise they have to support the stack. Look for gaps in the skills matrix of the personnel supporting the application.

Maintainability

Maintainability indicates how well the technical stack enables rapid responses to problems or change requests.

How to assess: Use the following criteria:

- The time, effort and risk required to enhance or make functional or technical changes to the technical stack or its applications.
- The scalability of the application (adding users or activity volume).
- The effort required to integrate applications on this technical stack with other processes or systems.
- The difficulty and reliability of testing the application.

Vendor Viability and Support

Vendor viability and support indicates the sustainability of the vendor(s) and their level of support for the software products in the technical stack.

How to assess: Ask the following questions:

- Does the vendor still exist, or are there concerns about the sustainability of the vendor?
- Is the vendor investing in the product, and is there a clear future roadmap?
Architectural Alignment

Architectural alignment indicates whether the technical stack aligns with the architectural direction and standards of the organization to enable efficient operations, support and integration.

How to assess: Compare the current stack against preferred application and technical architecture. Check if the nonfunctional requirements are met. Adapt the score if the technical stack is an acceptable exception.

Production Stability

Production stability indicates the reliability and stability of the technical stack, including availability, resilience and recoverability.

How to assess: Gather reliability information from users, service management data, development and support teams. Consider both the overall level of reliability and the trend.

Security

The security indicator defines how well the technical stack protects information, data and functions from unauthorized use or extraction.

How to assess: Ask the following questions:

- Is the vendor actively supporting the version of the product you have, or is it out of date?
- Has the vendor announced that product support will come to an end?
- Is the software or component known to have vulnerabilities?
- Are security updates for the software being delivered and installed on a regular basis?
- Does the software meet all security guidelines and regulations?
After gathering and assessing information about the technical fitness indicators, use Table 3 to rate the technical fitness for each technical stack.

Create a Roadmap for Application Portfolio Rationalization

The application fitness assessment itself does not bring value. The results of the assessment must be presented and discussed with all stakeholders to identify and prioritize improvement initiatives.

Creating awareness, consensus and support among all stakeholders is a critical success factor to plan and successfully execute the improvements.

Applications and software engineering leaders can use the TIME model to illustrate the overall fitness of (part of) the application portfolio and that of individual applications. The business fitness and technical fitness rating will classify each application in one of the following categories:

- **Tolerate**: The application is in good technical shape but lacking in business support, so IT would tolerate it in the portfolio until the business wanted to invest to improve its business fitness.

- **Invest**: The application is in good shape, so you should invest in it when asked to add features or turn on some new functionality of a packaged application, while also keeping it technically healthy.

- **Migrate (or Modernize)**: The application does what the business wants, but IT is concerned with the age and brittleness of the underlying technology. If the business wants functional improvements, IT should try to address this technical debt simultaneously by migrating the technical stack or the packaged application to current, supported technology.
Eliminate (or Replace): These applications may be in such bad shape it is not worth investing in them. If they are not needed or the functionality is now available in a better application, they could be eliminated. If the functionality is still needed, they might better be replaced.

Figure 2 illustrates an example TIME plot. Each application in the quadrant is positioned based on its business fitness rating (horizontal axis) and its technical fitness (vertical axis). The size of the bubble indicates its cost fitness (the bigger the bubble, the worse its cost profile).

Figure 2: Use TIME to Classify Applications and Discuss With Stakeholders

TIME Categorization of Applications and Products in (Part of the) Portfolio

- Eliminate
- Migrate
- Tolerate
- Invest

Larger bubble indicates worse cost profile.
The TIME model helps to define a high-level roadmap for portfolio rationalization (see Using TIME for Application and Product Portfolio Triage: Data From the Field). Use this framework to inform discussions about application remediation, replacement and improvements to the health of the portfolio. The outcome of the discussion should be a prioritized list of improvements that all stakeholders agree upon.

The next step is to create a business case for each improvement (see Building a Successful Business Case for an Application Modernization Program) and apply the correct governance to make sure that the improvements are implemented (see Managing a Portfolio of Applications Demands More Than Application Portfolio Management).

Evidence

Twenty years of inquiries with clients using this method.

Note 1 — Rate the Business Fitness of Each Application

The application fitness assessment uses relative performance ratings (Levels 1 through 5) for each indicator instead of absolute values and quantified metrics. This approach makes it easier to compare and rank applications across all indicators, which prevents the risk of analyzing incompatible figures and helps to deal with missing quantified information.

The overall rating for a fitness dimension — like business fitness — is calculated as the average of the ratings for the underlying fitness indicators. Our application fitness assessment Toolkit (and many APM tools in the market) allows a weighting to be applied to each indicator as part of the average calculation to increase or decrease importance of particular indicators.

Use Table 2 to rate each application based on the business fitness evaluation outlined in this document.
Table 2: Rate the Application Based on Business Fitness and Cost Fitness Indicators
(Enlarged table in Appendix)

<table>
<thead>
<tr>
<th>Business Fitness Indicators</th>
<th>1 — Poor</th>
<th>3 — Fair</th>
<th>5 — Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Fit</td>
<td>Application is weak in two or more business fit categories (support, vitality or correctness).</td>
<td>Application fulfills most business process requirements but is weak in one business fit category.</td>
<td>Application performs well, provides excellent support and requires minimal manual overrides to drive its execution.</td>
</tr>
<tr>
<td>Information Quality, Timeliness and Privacy</td>
<td>Application is weak in one of the four information quality categories; or quality, timeliness and privacy are adequate in fewer than 90% of review points.</td>
<td>Application is good to excellent in at least 90% of all review points for all four categories.</td>
<td>Application is good to excellent in all aspects of information quality, timeliness and privacy.</td>
</tr>
<tr>
<td>Future Potential</td>
<td>Application is being contained to current uses or will soon be retired.</td>
<td>Application is considered tactical.</td>
<td>Application is strategic for the organization.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cost Fitness Indicators</th>
<th>1 — Poor</th>
<th>3 — Fair</th>
<th>5 — Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service, Maintenance and Enhancement Costs</td>
<td>Application costs are relatively high, trending up and unpredictable.</td>
<td>Application costs are average and stable.</td>
<td>Application costs are relatively low, trending down and predictable.</td>
</tr>
</tbody>
</table>

Source: Gartner (October 2021)

Note 2 — Rate the Technical Fitness of the Technical Stack

Use Table 3 to rate the technical stack based on the technical fitness evaluation outlined in this document.
Table 3: Rate the Technical Stack Based on Technical Fitness Indicators

(Enlarged table in Appendix)

<table>
<thead>
<tr>
<th>Technical Fitness Indicators</th>
<th>1 – Poor</th>
<th>3 – Fair</th>
<th>5 – Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliance on Skills and Subject Matter Experts</td>
<td>Technical stack has inadequate support due to limited staff, missing skills and backup. Restaffing is difficult due to market conditions.</td>
<td>Technical stack is supported by a solid team of subject matter experts but does not have deep backup.</td>
<td>Technical stack is maintainable and extendable by a sufficient number of people, and each expert has solid backup.</td>
</tr>
<tr>
<td>Maintainability</td>
<td>Technical stack and its applications are difficult to maintain — two or more indicators are below average.</td>
<td>Technical stack and its applications have average maintainability — one indicator is below average.</td>
<td>Technical stack and its applications can be maintained efficiently — most indicators are above average.</td>
</tr>
<tr>
<td>Vendor Viability and Support</td>
<td>Technical stack includes unsupported software products.</td>
<td>Technical stack supports software products, but there are concerns about future support of the products or the viability of the vendor.</td>
<td>Technical stack is strategic and will be actively developed and supported for at least 10 years.</td>
</tr>
<tr>
<td>Architectural Alignment</td>
<td>Technical stack architecture is not well-aligned with current practices and fails to comply with more than 25% of the key architectural standards.</td>
<td>Technical stack architecture falls to comply with 50% or less of the key architectural standards or principles.</td>
<td>Technical stack architecture is fully compatible with current architectural practices and principles.</td>
</tr>
<tr>
<td>Production Stability</td>
<td>Technical stack has major stability and reliability problems, which have a severe impact and disrupt the business.</td>
<td>Technical stack has an acceptable level of stability and reliability, but requires monitoring or manual intervention to keep it running.</td>
<td>Technical stack has the inherent capability to ensure availability and automated recovery.</td>
</tr>
<tr>
<td>Security</td>
<td>Technical stack has serious security vulnerabilities, making protection of data and functions impossible.</td>
<td>Technical stack has basic security for unauthorized access.</td>
<td>Technical stack is secure and provides different levels of authorization and support for tracing and auditing.</td>
</tr>
</tbody>
</table>

Source: Gartner (October 2021)

Document Revision History

How to Assess Your Application and Product Portfolio for Business and Technical Fitness - 17 October 2018

How to Assess Your Current Application Portfolio Using Fitness and Value Review Processes - 8 September 2016

How to Assess Your Current Applications Using Fitness and Value Review Processes - 14 November 2012

Use a Health Check to Determine Your Application's 'Fitness for Duty' - 19 January 2006
Recommended by the Authors

Some documents may not be available as part of your current Gartner subscription.

Toolkit: Application Portfolio Business and Technical Fitness Assessment

Using TIME for Application and Product Portfolio Triage: Data From the Field

How to Prioritize Application Inventory and Rationalization

How to Address Bias When Evaluating Application Portfolios

Use the Right Portfolio Assessment Method for Each Type of Enterprise Software

Market Guide for Application Portfolio Management Tools

Taking on Application Rationalization's 'Wicked Problem' of Getting Business Engagement

Managing a Portfolio of Applications Demands More Than Application Portfolio Management

Building a Successful Business Case for an Application Modernization Program

Use Continuous Modernization to Build Digital Platforms From Legacy Applications

Product-Outcome-Aligned Modernization Decisions (Intrado)

Decommissioning Applications: The Emerging Role of the Application Undertaker
Table 1: Fitness Dimensions and Indicators for Application Portfolio Assessment

<table>
<thead>
<tr>
<th>Business Fitness</th>
<th>Technical Fitness</th>
<th>Cost Fitness</th>
</tr>
</thead>
<tbody>
<tr>
<td>How well does the application or product support the business?</td>
<td>What is the fitness of the technical stack that supports the application?</td>
<td>Costs to operate, maintain and improve functionality.</td>
</tr>
<tr>
<td>■ Business fit</td>
<td>■ Reliance on skills and subject matter experts</td>
<td>■ Service, maintenance and enhancement costs</td>
</tr>
<tr>
<td>■ Information quality, timeliness and privacy</td>
<td>■ Maintainability</td>
<td></td>
</tr>
<tr>
<td>■ Future potential</td>
<td>■ Vendor viability and support</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Architectural alignment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Production stability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Security</td>
<td></td>
</tr>
</tbody>
</table>

Source: Gartner (October 2021)
Table 2: Rate the Application Based on Business Fitness and Cost Fitness Indicators

<table>
<thead>
<tr>
<th>Business Fitness Indicators</th>
<th>1 — Poor</th>
<th>3 — Fair</th>
<th>5 — Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Fit</td>
<td>Application is weak in two or more business fit categories (support,</td>
<td>Application fulfills most business process requirements but is weak in</td>
<td>Application performs well, provides excellent support and requires</td>
</tr>
<tr>
<td></td>
<td>vitality or correctness).</td>
<td>one business fit category.</td>
<td>minimal manual overrides to drive its execution.</td>
</tr>
<tr>
<td>Information Quality, Timeliness and Privacy</td>
<td>Application is weak in one of the four information quality categories; or</td>
<td>Application is good to excellent in at least 90% of all review points for all four categories.</td>
<td>Application is good to excellent in all aspects of information quality, timeliness and privacy.</td>
</tr>
<tr>
<td></td>
<td>quality, timeliness and privacy are adequate in fewer than 90% of review points.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Future Potential</td>
<td>Application is being contained to current uses or will soon be retired.</td>
<td>Application is considered tactical.</td>
<td>Application is strategic for the organization.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cost Fitness Indicators</th>
<th>1 — Poor</th>
<th>3 — Fair</th>
<th>5 — Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service, Maintenance and Enhancement Costs</td>
<td>Application costs are relatively high, trending up and unpredictable.</td>
<td>Application costs are average and stable.</td>
<td>Application costs are relatively low, trending down and predictable.</td>
</tr>
</tbody>
</table>

Source: Gartner (October 2021)
Table 3: Rate the Technical Stack Based on Technical Fitness Indicators

<table>
<thead>
<tr>
<th>Technical Fitness Indicators</th>
<th>1 — Poor</th>
<th>3 — Fair</th>
<th>5 — Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliance on Skills and Subject Matter Experts</td>
<td>Technical stack has inadequate support due to limited staff, missing skills and backup. Restaffing is difficult due to market conditions.</td>
<td>Technical stack is supported by a solid team of subject matter experts but does not have deep backup.</td>
<td>Technical stack is maintainable and extendable by a sufficient number of people, and each expert has solid backup.</td>
</tr>
<tr>
<td>Maintainability</td>
<td>Technical stack and its applications are difficult to maintain — two or more indicators are below average.</td>
<td>Technical stack and its applications have average maintainability — one indicator is below average.</td>
<td>Technical stack and its applications can be maintained efficiently — most indicators are above average.</td>
</tr>
<tr>
<td>Vendor Viability and Support</td>
<td>Technical stack includes unsupported software products.</td>
<td>Technical stack supports software products, but there are concerns about future support of the products or the viability of the vendor.</td>
<td>Technical stack is strategic and will be actively developed and supported for at least 10 years.</td>
</tr>
<tr>
<td>Architectural Alignment</td>
<td>Technical stack architecture is not well-aligned with current practices and fails to comply with more than 25% of the key architectural standards.</td>
<td>Technical stack architecture fails to comply with 50% or less of the key architectural standards or principles.</td>
<td>Technical stack architecture is fully compatible with current architectural practices and principles.</td>
</tr>
<tr>
<td>Production Stability</td>
<td>Technical stack has major stability and reliability problems, which have a severe impact and disrupt the business.</td>
<td>Technical stack has an acceptable level of stability and reliability, but requires monitoring or manual intervention to keep it running.</td>
<td>Technical stack has the inherent capability to ensure availability and automated recovery.</td>
</tr>
<tr>
<td>Security</td>
<td>Technical stack has serious security</td>
<td>Technical stack has basic security for</td>
<td>Technical stack is secure and</td>
</tr>
</tbody>
</table>
vulnerabilities, making protection of data and functions impossible.

unauthorized access.

provides different levels of authorization and support for tracing and auditing.

Source: Gartner (October 2021)